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3Source: International Energy Agency (IEA, 2010)

In the next 20 years, half demand growth of China‘s 
primary energy/resources supply will remain 
depending on coal.



Background

• In the last few decades, there have been many new coal 
processes developed and deployed in China.

• However, there has been a lack of quantitative integrated 
evaluation, either on their technological-economic 
performance, long-term influence on supply chain, or 
impact on society and ecological environment. 
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Base case: Coal syngas derived product chains

Gasification



Sustainability concerns in the CPI

• Technical and Economics
• Efficiency of resource utilization: material, energy, water. 
• Return on Investment capitals.

• Environmental Impacts
• Water, Toxics waste
• Air pollutant dispersion (especially PM2.5) 
• GHG emission

• Social Benefits
• Business: supply chain, market
• Occupational: health and safety, social responsibility
• Geographical: urban planning, land use, river and hydrology
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Objectives

• To establish life cycle models for alternative coal 

processes from feedstock, to production, market, and 

recycling. To rationalize the decision-making on resource 

allocation and process design;

• To reduce investment and operating costs, raise 

efficiency and minimize environmental impacts. To 

explore integrated approaches for balance of  efficiency 

and sustainability. 
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Approaches for system sustainability analysis

• Process�System�Analysis
Input-output analysis (yield, conversion rate) 

Resource conversion efficiency

Exergy analysis

• Sustainability
Environmental impact assessment

Life cycle costing

Emergy analysis (ecological analysis)

Tech-economic–environ–social:  multi-objective coordination
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Exergy efficiency analysis

exergy 
loss



Process improving
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• Identify bottlenecks;

• Energy integration and material flow 
re-distribution were conducted.

• Exergy efficiency improves 5%.
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Problem of the single-feedstock gasification process

Hydrogen to carbon ratio:
H/C ratio of coal-based syn-gas: 0.5-1; 
H/C ratio of NG-based syn-gas:  4-5;
H/C ratio to produce chemicals: 2. 
Energy loss of the key units:
Coal gasification exothermic, high temperature syngas to be cooled.
NG steam reforming endothermic, 35% extra gas burns to heat.

Process Innovation: Coal/Gas Co-feed, Chem/Power Co-generation

Key structural variables: 
co- feed factor P1

co-generation factor: P2



Multi-feed Co-production System

Biomass refining
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NG-Coal co-feed co-generation process
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Modeling with Eco-indicator 99

17Eco-indicator 99 manual for designers: a damage oriented method for life cycle impact assessment, 2000

1. Establish LCA model and simulation of the process; 
2. Sort out environmental impact factor through inventory analysis;
3. Characterization in several major concerning catalogues.



Industrial Case: Coal to Olefins 
The first commercial CTO plant in the world was built by China Shenghua Group Co. in 2011, 
with a capacity of 0.6 Mt/a olefins and annual return  $0.16 Billion USD.
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 There is a big gap between olefins demand and production 
capacity in China.  Ethylene and propylene are produced 
only 50%  and 70% of market demand, respectively.

Source: China Energy Statistics Yearbook, 2011.  An F, Ming J. Petro Petrochem Today 2012; 20: 18-23. 

CTO Development Opportunity
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 Coal is relatively abundance and low price in China.



Cost�evaluation�of�CTO

• Coal�feedstock�cost�accounts�for�39%�of�olefins�product�cost,�much�lower�than�88%�of�OTO.�It�
may,�however,�be�offset�with�oil/coal�price�fluctuation,�beside�of�high�utility/investment�cost.�

• CTO�efficiency�could�be�improved�with�better�process�integration,�utility,�operation,�equipment.
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• On�the�other�hand,�CTO�is�challenged�with�lower�price�Middle-east�NGTO.



CTO�Energy�efficiency,�in�comparison�with�OTO

We have to explore new process to improve CTO performance.

Item OTO CTO LHV

Consumption

Naphtha (t/t olefins) 1.4 N/A 45000MJ/t

Coal (t/t olefins) N/A 4.1 28100MJ/t

Water (t/t olefins) 9 30 2.6�MJ/t���

Electricity (kWh/t olefins) 74 1671.0 3.6MJ/KWh

Steam (MJ/t olefins) 1140 8753

Total�E�input(GJ/t�olefins) 66230 130057 —

Product/output

Ethylene (t/t�olefins) 0.56 0.45 47000MJ/t

Propylene (t/t olefins) 0.26 0.45 47000MJ/t

C4 (t/t�olefins) 0.17 0.10 47000MJ/t

CO2�(t/t�olefins) 1.3 5.8 —

Product�energy�(MJ) 47000 47000 —

Energy efficiency (%) 71.0 36.1 —
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Life cycle boundary of the CTO process 



LCA 
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Life cycle exergy flow diagram of CTO



Stage Unit  
Input  Output  

Exdest. (MW) η 
Item  Exflow (MW) Item  Exflow (MW) 

CP CM&P Crude coal  1229.38 Bitumite 1003.76 54.23 95.78% 

 Elec. and fuel  54.23 Coal gangue  225.62   

CT CT Bitumite  1003.76 Bitumite  1003.76 1.68 99.83% 

Elec. and fuel  1.68     

OP ASU Air  6.79 O2  13.74 69.50 27.06% 

Elec.  95.29 N2  12.05   

CWS Bitumite  1003.76 Slurry  1003.91 0.46 99.95% 

Water  0.15     

Elec.  0.46     

CG  Slurry  1003.91 Crude syngas  677.33 241.45 76.70% 

O2 13.74 Steam  112.18   

Cooling water  18.54 Elec.  5.54   

Ammonia water 0.30     

WGS Crude syngas  677.33 Shifted syngas 659.53 129.98 83.54% 

Steam  112.18     

AGR Shifted syngas  659.53 Cleaned syngas 619.88 3.48 99.48% 

N2 12.05 Rich H2S 11.49   

Elec.  0.03 Rich CO2 36.75   

MSU Cleaned syngas  619.88 Methanol  545.24 77.85 87.51% 

Life cycle exergy inventory of CTO

CP                 CT                OP               WM        



LCA 

GWP: global warming potential

OZD:  ozone depletion

POCP: Prot-chemical potential

AP: Acid rain potential

HT: Health Toxion

NP: Nutrition potential

ETP: Ecological Toxion potential

RDP: Resource depletion potenti

• Traditional production costs 
• Waste management costs 
• Ecological costs 
• Social costs
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Life cycle environmental inventory of CTO
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CO2 CH4 NO2 SO2 NOX CO VOC PM
Coal mining stage Transport stage CTO stage Utilization stage

kg/t olefins CO2 CH4 NO2 SO2 NOX CO VOC PM

Coal mining stage 42.5 10.94 .003 0.41 0.11 0.01 0.11 0.11

Transport stage 0.1 0.00 .001 0.00 0.00 .000 .000 .000

Production stage 8744.0 1.86 .044 5.31 5.72 9.11 1.60 1.81

Utilization stage 10.9 6.69 .001 0.16 0.39 4.41 0.74 5.28

Total 8797.0 19.50 .048 5.88 6.22 13.53 2.45 7.21



Life cycle cost of CTO  
CNY/t olefins CO2 CH4 NO2 SO2 NOX CO VOC PM Total

Coal mining stage 2.1 9.83 0.02 13.3 1.7 0.00 1.6 12.8 41

Transport stage 0.0 0.00 0.01 0.0 0.1 0.00 0.0 .01 0.1
Production stage 424.4 1.67 0.34 170.5 90.3 0.66 22.9 202.4 913
Utilization stage 0.5 6.01 0.00 5.2 6.2 0.32 10.6 589.7 618

Total 427.0 17.51 0.37 189.0 98.3 0.99 35.1 804.9 1573
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The external cost constitutes 1/4 of life cycle cost, 
mainly in the stages of production and utilization, respectively.
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Life cycle cost of CTO  

CO2, 27.14%

CH4, 1.11%
NO2, 0.02%

SO2, 12.02%
NOX, 6.25%

CO, 0.06%VOC, 2.23%

PM, 51.16%
In LCC of CTO, 
PM treatment is the largest 
external cost. 
CCS cost is the second. 

CNY/t olefins CO2 CH4 NO2 SO2 NOX CO VOC PM Total
Coal mining stage 2.1 9.83 0.02 13.3 1.7 0.00 1.6 12.8 41

Transport stage 0.0 0.00 0.01 0.0 0.1 0.00 0.0 .01 0.1
Production stage 424.4 1.67 0.34 170.5 90.3 0.66 22.9 202.4 913
Utilization stage 0.5 6.01 0.00 5.2 6.2 0.32 10.6 589.7 618

Total 427.0 17.51 0.37 189.0 98.3 0.99 35.1 804.9 1573



How to improve the sustainability of CTO? Process innovation. 
1. Natural Gas and Coal to Olefin (NG-CTO)
How to improve the sustainability of CTO? 

30

(1) CH4 introduced to a dry reformer with 
recycled  CO2. The syngas H2/CO ratio  
1:1, to improve mixed syngas H/C ratio.

DMRCH4

α

β

(2) A part of pressurized hot CO2 is recycled 
to the gasifier, as a gasification agent, to 
increase syngas production.

Huge CO2 emission 
(5.8t CO2/ t Olefins).



Mass and Energy Efficiency Improvement

Methane dry reforming reaction is strongly endothermic. It is important to select 
CO2 recycle  rate for a rational energy integration.

NG-CTO efficiency for material, 
energy, and CO2 emission.

As CO2 recycle, Carbon element and 
energy efficiency increase, while CO2
emission is reduced.
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• H2 -rich coke-oven gas fed, 
CH4/CO2 reforming raise H/C ratio to 1.

There are 35 billion m3/yr 
H2 rich coke-oven gas 
burned in China. 

CH4/H2O reforming  
raise H/C further to 2 



As introduce of coke oven gas, C utilization 
efficiency rises, while CO2 emission decreases.

Material and Environmental performance of GCTO
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Item CTO CGTO LHV

Consumption

Coal (t/t olefins) 4.10 0.97 28100.0 MJ/t

Coke-oven gas (m3/t olefins) N/A 3288 17.4 MJ/m3

Water (t/t olefins) 30.00 48.00 2.6 MJ/t   

Electricity(kWh/t olefins) 1671 2064 3.6 MJ/kWh

Steam (MJ/t olefins) 8753 12498 —

Total energy input (MJ) 130056 104521 —

Products output

Ethylene (t/t olefins) 0.45 0.45 47000.0 MJ/t

Propylene (t/t olefins) 0.45 0.45 47000.0 MJ/t

C4
+ (t/t olefins) 0.10 0.10 47000.0 MJ/t

CO2 emission(t/t olefins) 5.80 0.30 —

Olefins energy (MJ) 47000 47000 —

Energy efficiency (%) 36.10 50.70 —

Energy efficiency and CO2 release of GCTO
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Break even point 
145CNY, or 25 USD

* Feedstock: 620 CNY/t coal, 0.8 CNY/m3 coke-oven gas.



Concluding Remarks
1. Coal based processes will still dominate the energy/chemical 

industries in China for next a few decades. 

2. Compared with conventional OTO, although CTO is economical 
feasible, it suffers lower energy efficiency, higher water usage, and 
severe emissions. Existing CTO could be integrated with alternative 
feedstock to raise H/C ratio and reduce CO2 release.

3. Coal based processes with higher CO2 capture rate and higher purity 
for commercial use could improve environmental and economic 
performance a lot. 

4. Multi-dimensional technical-economical-environmental-social models 
should be built for quantitative sustainability analysis, which is 
essentially important for innovative development of sustainable new 
coal based chemical processes.  
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Coal-based Energy and Chemical Product Chains
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LCA Approach
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Life Cycle Boundary and Scope
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Eco-LCA Framework

47
[1] Zhang, Y.; Baral, A.; Bakshi, B.R. Accounting for ecosystem services in life cycle assessment, part II: 

toward an ecologically based LCA. Environ. Sci. Technol. 2010, 44, 2624-2631. 

Process efficiency
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Multi-attribute Eco-LCA Metrics
1. Sustainable exploitation

α = aaver·amin
2.  Economic effectiveness
λ = MoneyProd / MoneyInv

4.  Resource utilization ECDP = ExProd / ECECProd

3. Environmental 
compatibility
ψ = EMR / IVP

1. Resource abundant factor：Lems, S.; de Swaan Arons, J. The sustainability of resource utilization. Green Chem. 2002, 4, 308-313. 
2. EMR is the overall ECEC/Money Ratio, IVP is the ECEC per unit of economic output. ψ = EMR / (ECECProd / MoneyProd) 



Eco-LCA of Steam Production
the functional unit produces 
80 kt/yr of 3.5MPa saturated 
steam.

Gas boiler v.s.  Solar boiler
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Eco-LCA of Steam Production



Generic No. Indicators Metric

Resource 1 Mass productivity（MP） kg/kg

2 Renewability material index（RIM） kg/kg

Energy 3 Energy efficiency（η） kJ/kJ

4 Exergy efficiency（ψ） kJ/kJ

Environment 5 Global warming portential（GWP） kg/kg

6 Atmospheric acidification potential(AP) kg/kg

7 Environmental loading ratio（ELR） kSej/kSej

Economy 8 Payback period（PBP） yr

9 Equivalent annual cost（ceq） $

Sustainability analysis on resource, energy, 
environment, and economy
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Case 4: Coal based process with CCS
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• On the other side, CO2 enriched to higher concentration (99%) for commercial usage is 
better for resource utilization and economic performance. 

• As shown in the chart, although GWP reduced, CO2 capture (CC) costs.  Captured CO2
(90%) for oil extraction/geo-storage are of higher Cost and PayBackPeorid. 

Coal gasification with CCS or CCU?

Texaco gasification
Texaco gasification with CC (90% CO2)
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• Quantitative sustainability analysis helps rational 
decision making on CCUS approaches.



Eco-LCA of Olefin Production

Eco-LCA models of CTO 
and OTO are being 
established and quantitatively 
compared, as the long term 
strategy assessment for the 
industry and decision 
makers.



此处是否可以找一个天平的图？

Efficiency vs. Sustainability
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Coordinate, Balance, Trade off



A platform for sustainability assessment and decision-making

• sustainability 
performance

• Process 
Improvement 
and innovation 
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Process integration, and Innovation

Alternative energy-chemical processes

approach
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Life cycle evaluation of the efficiency and sustainability 

Integrated innovation of new energy/chemical processes


